Attention-based Hierarchical LSTM Model for Document Sentiment Classification
نویسندگان
چکیده
منابع مشابه
Attention-based LSTM for Aspect-level Sentiment Classification
Aspect-level sentiment classification is a finegrained task in sentiment analysis. Since it provides more complete and in-depth results, aspect-level sentiment analysis has received much attention these years. In this paper, we reveal that the sentiment polarity of a sentence is not only determined by the content but is also highly related to the concerned aspect. For instance, “The appetizers ...
متن کاملAttention-based LSTM Network for Cross-Lingual Sentiment Classification
Most of the state-of-the-art sentiment classification methods are based on supervised learning algorithms which require large amounts of manually labeled data. However, the labeled resources are usually imbalanced in different languages. Cross-lingual sentiment classification tackles the problem by adapting the sentiment resources in a resource-rich language to resource-poor languages. In this ...
متن کاملHierarchical Attention Networks for Document Classification
We propose a hierarchical attention network for document classification. Our model has two distinctive characteristics: (i) it has a hierarchical structure that mirrors the hierarchical structure of documents; (ii) it has two levels of attention mechanisms applied at the wordand sentence-level, enabling it to attend differentially to more and less important content when constructing the documen...
متن کاملMultilingual Hierarchical Attention Networks for Document Classification
Hierarchical attention networks have recently achieved remarkable performance for document classification in a given language. However, when multilingual document collections are considered, training such models separately for each language entails linear parameter growth and lack of cross-language transfer. Learning a single multilingual model with fewer parameters is therefore a challenging b...
متن کاملLinguistically Regularized LSTM for Sentiment Classification
This paper deals with sentence-level sentiment classification. Though a variety of neural network models have been proposed recently, however, previous models either depend on expensive phrase-level annotation, most of which has remarkably degraded performance when trained with only sentence-level annotation; or do not fully employ linguistic resources (e.g., sentiment lexicons, negation words,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2018
ISSN: 1757-899X
DOI: 10.1088/1757-899x/435/1/012051